Technology and Materials of Quantum Electronics

Instructor:Oleg Igorevich Rabinovich
Updated:2016-May-25

Course Summary

The goal of the development of this course is to prepare professionals to solve problems in the modern professional scientific and production teams involved in innovative technology development to create new materials and devices of quantum electronics.

It is intended to form the foundation of the training of masters in the use of high-precision equipment, receiving the specified parameters of materials, including multicomponent nanoheterostructures, thin films and high-purity semiconductor materials and devices based on them (components and nanotechnology)

Purpose to teach: — to analyze structural and physical properties of a variety of inorganic semiconductor materials, and the ability to create on their basis the low-dimensional structures for devices of micro — and nanoelectronics; — to analyze and choose the technology of low-dimensional structures with desired characteristics — to carry out calculations of electrical and optical characteristics of the various devices of micro — and nanoelectronics based on computer simulation — to analyze structural and physical properties of a variety of inorganic semiconductor materials, and the ability to create on their basis the low-dimensional structures for devices of micro — and nanoelectronics; — to carry out calculations of electrical and optical characteristics of the various devices of micro — and nanoelectronics based on computer simulation

Course Format

Hours of lectureHours of discussionHours of independent studyTotal numbers of hours
321660144

Please note that students are expected to study outside of class for three hours for every hour in class.

Course Content

The plan is to work through the following topics

  1. Electronic systems in low-dimensional thin films and heterostructures of inorganic semiconductors
    • Overview of semiconductor nanodimensional structures. Their importance for applied science, micro — and nanoelectronics. Comparative analysis of the Si, Ge, compounds A3B5, A2B6, A4V4 prospects. Heterostructures (HS), and the most common semiconductor solids based on A3B5: arsenide phosphide and nitrides of elements of the third group and their application. A brief review of the physical properties of bulk three-dimensional (3D) semiconductors — energy band diagrams, density of states, doping, carrier statistics, efficient mass , mobility of charge carriers.
    • Size quantization- Two-dimensional (2D) systems — quantum well (QW) heterostructures, the wave functions and spectrum of electrons in a rectangular and quasitriangular well, dimensional subzones, the conditions for observing the size quantization. One-dimensional (1D) systems — quantum wire (CP) and the zero-dimensional (0D) systems — quantum dots (QDs).
    • Transportation carriers in low-dimensional systems. 2D systems — single quantum wells, multiple quantum well (MQW) superlattice (SL). Thermionic emission of carriers from the quantum well. Tunneling effects. Double-barrier structure. The transmission coefficient, Transport of charge carriers in a 3D environment with a set of semiconductor quantum dots (QDs)
  2. Technology for low-dimensional structures production
    • Contemporary technologies of semiconductor thin films and heterostructures growth. Physical vapor deposition. The method of molecular-beam epitaxy (MBE). Molecular Beam Epitaxy of Elementary Semiconductors and semiconductor-based compounds A3B5 and A4V4, Chemical vapor deposition (CVD, its types, the basic laws and methods. Epitaxy from organometallic compounds and volatile inorganic hydrides (MOCVD). Features of growing epitaxial nitride binary compounds A3B5. The main diagnostic methods nanoheterostructures.
    • Fundamentals of the theory of nucleation. Key growth processes on solid surfaces: adsorption, desorption, and surface diffusion of atoms in thin films. The concept of a critical nucleus. The thermodynamic and molecular-kinetic theory of nucleation. Zeldovich theory — Frenkel. Homo — and heteroepitaxy. The mechanisms of heteroepitaxial growth: Frank van der Verma, Volmer-Weber-Krastanov Stransky. Nucleation in growing epitaxial nitride binary compounds A3B5. The theory of the formation of a continuous film. Kolmogorov model for two-dimensional crystallization
  3. Micro- and nanoelectronic devices based on low-dimensional structures of inorganic semiconductors
    • Light emitting diodes
    • Solar cells
    • Bipolar transistors.
    • Field effect transistors.
    • Lasers

Reading List

  1. J. Piprek; Nitride Semiconductor Devices. Principles and Simulation; Wiley; 2014
  2. Angus Rockett; The Materials Science of Semiconductors; Springer; 2014
  3. Harald Ibach, Hans Lüth; Solid-State Physics. An Introduction to Principles of Materials Science; Springer; 2014
  4. Peter Y. Yu, Manuel Cardona; Fundamentals of Semiconductors. Physics and Materials Properties; Springer; 2014
  5. H. Morkos; Handbook of Nitride Semiconductors and Devices; Wiley; 2014

Homework Assignments

Six assinments distributed evenly through out the term. They include theoretical questions on numerical methods and small modelling problems.

Grading

Class participation10%
Homework assignments30%
Midterm course work20%
Final exam40%