Spectroscopy of Nanostructures

Instructor: Philipp V. Kiryukhantsev-Korneev

Course Summary

Extremely low grain size, presence of few nanocrystalline and/or amorphous phases, strong texture, strong deformation of crystalline lattice, high level of internal stresses make the usage of the classical methods of material science, such as X-ray diffraction and selected area electron diffraction, excessively problematic. In the case of nanostructured/nanocomposite films additional difficulties are related to the small thickness of analyzed materials and intense substrate signals. Different types of spectroscopic methods open new horizons in the area of recognizing the complex structures of nanomaterials. The aim of this course is to give students comprehensive knowledge of advanced spectroscopic methods for analysis of thin films and bulk nanostructured and nanocomposite materials. The X-ray photoelectron spectroscopy (XPS) is a technique that measures the elemental composition and phase composition of material both in crystalline and in amorphous states. XPS is irreplaceable at the analysis of nanomaterials and is used in complex with X-ray diffraction and high-resolution transmission electron microscopy. The application of XPS for this complex analysis is discussed. Raman and Fourier-transformed infra-red spectroscopy (FTIR) are benefit for investigation of different non-metal, ceramic, and composite nanomaterials. The corresponded examples are presented. Auger-electron spectroscopy (AES) is a perfect instrument for local analysis of nanoscale structural elements in nanomaterials. The recent method of glow discharge optical emission spectroscopy (GDOES) is ideal for examination of nanolayered or nanocomposite thin films and shows the set of advantages compared to energy-dispersive spectroscopy (EDS), XPS, and AES. These preferences as well as questions of practical using of GDOES are discussed. The applications of spectrometers in complex with other analytical devices (EDS-TEM, Raman-AFM etc.) are discussed.

Course Format

Hours of lectureHours of discussionHours in laboratoryHours of independent studyTotal numbers of hours

Learning Outcomes

  • Demonstrate an understanding of main principles of spectroscopic methods and key process of interaction between excite beams and material surface;
  • Demonstrate an understanding of constructions and principles of work of main components of spectrometers;
  • To be able to suggest and explain the choice of a spectroscopic method for investigation of a concrete sample of nanomaterial;
  • Demonstrate a skill to interpret the data (spectra, elemental profiles, maps of element distribution etc.) obtained by spectroscopy;
  • Demonstrate knowledge of all features of the spectroscopic methods for analysis of thin films/coatings/layered structures;
  • Demonstrate a skill to search required reference data (wavelength, energies etc.) for different elements/compounds using handbooks, periodical literature, and different on-line data bases;
  • Demonstrate knowledge of practical applications of the spectroscopic methods for study of bulk nanomaterials and nanocomposite thin films.

Course Content

Part I. Optical spectroscopy (2 hours)

  • Introduction
  • Spectroscopy methods
  • Classification on radiation
  • Classification of objects
  • Scheme of optical spectrometer
  • Typical recorded characteristics
  • Color spaces
  • Practical application

Part II. Optical emission spectroscopy (4 hours).

  • Main types of methods
  • Sources for signal creation
  • Schemes of optical emission spectrometers
  • The main components of spectrometers
  • Features, advantages and disadvantages of glow discharge optical emission spectroscopy
  • Comparison of GDOES with other methods
  • Main control parameters
  • Calibration and application of standard samples
  • Software principles
  • Practical application.

Part III. Energy-dispersive X-ray spectroscopy (2 hours)

  • Interaction of electron beam with matter
  • Main principles of the WDS and EDS spectroscopy
  • Construction of the X-ray detector
  • Main components of the detector
  • Types of the EDS analysis
  • Features of thin films investigation

Part IV. Photoelectron and Auger-electron spectroscopy (2 hours).

  • Different processes after X-ray initiation
  • Main principles of the XPS and UPS spectroscopy.
  • Construction of the apparatus for XPS
  • Quantitative and qualitative analysis of nanomaterials including nanocomposite films
  • Ways for optimization of the analysis
  • Main principles and features of AES spectroscopy

Part V. Raman and Fourier-transformed infra-red spectroscopy (2 hours)

  • Main vibrations of the molecules
  • Types of scattering
  • Main principles of Raman analysis and FTIR
  • Optical schemes of the spectrometers
  • Examples of practical application
  • Order of phase identification using standard samples and literature data.

Reading List

Core Texts:

  1. A.R. West. Solid State Chemistry and Its Applications. 2nd Edition. Wiley, 2014. 584 p.
  2. Infrared and Raman Spectroscopy: Methods and Applications. Bernhard Schrader (Ed). VCH, Germany, Weinheim. 2008. 807 p.
  3. R. Kenneth Marcus, José A. C. Broekaert (Eds.) Glow Discharge Plasmas in Analytical Spectroscopy. Wiley. 2003. 498 p.
  4. Siegfried Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials. Springer. 2013. 528 p.
  5. Patrick Echlin, C.E. Fiori, Joseph Goldstein, David C. Joy, Dale E. Newbury. Advanced Scanning Electron Microscopy and X-Ray Microanalysis. Springer US, 2013, 454 p.

Secondary Texts:

  1. Horst Czichos, Tetsuya Saito, Leslie Smith. Springer Handbook of Materials Measurement Methods. Spinger. 2006. 1208 p.
  2. Jose Solé, Luisa Bausa, Daniel Jaque. An Introduction to the Optical Spectroscopy of Inorganic Solids. Wiley. 2005. 304 p.
  3. O’Connor, John, Sexton, Brett, Smart, Roger S.C. (Eds.) Surface Analysis Methods in Materials Science. Springer. 2003. 585 p.

Peripheral Reading:

  1. Spectroscopy Letters. (Taylor & Francis Group) Volumes 23-48 (1990 — 2015).
  2. Journal of Applied Spectroscopy (Springer) Volumes 53-81 (1990 — 2014).


Class participation20 %
Homework assignments30 %
Final exam50 %