Materials Science &Technologies

Our graduates are highly qualified professionals in materials science engaged in scientific and production activities. Our learning programs focus on the research in a wide variety of materials such as metal alloys, ceramics, biomedical materials, semiconductors, crystals, etc. The curriculum provides for a constant participation of students in the activities of NUST MISIS leading scientific labs and centers. At the end of the program students defend their individual R&D works on new innovation materials.

2 years of study

Full-time education in Russian

Major # 22.04.01
Materials Science &Technologies

Pathway

High Temperature and Superhard Materials

This program focuses on innovations in modern materials science related to the research in obtaining new high temperature and superhard materials, their properties and options to use them in various industries. Students learn how to create materials for gas turbine engines, hypersonic flying objects, cutting and drilling equipment, various protective coatings, and study processes of artificial diamond synthesis for jewelry and other industries.

Innovation Construction Materials

Students acquire the knowledge necessary to design new material structured based on metals and alloys with the required properties, high strength and destruction resistance in the first place. They learn how to develop technologies to obtain and use in innovation areas such as power industry, aircraft industry and space technologies, transport, medicine, etc. Special attention is given to future research and experimental competencies, IT technologies in materials science including Big Data, machine learning techniques, digital options in creation and control of properties, workability forecasting and guaranteed reliability of technology and equipment operation.

Physics and Chemistry of Processes and Materials

This Master’s program focuses on the processes of innovation material creation, research in the physical and chemical properties and application of innovation materials in metallurgy, space industry, nuclear power industry, nanoindustry and medicine. The learning structure combines best old school traditions, key industrial trends and innovative methods of material research. Students study nanomaterials, new types of metallic alloys, diamonds and ceramics, composites, superhard and high temperature materials thus being able to acquire extensive cutting-edge scientific knowledge.