Science community

Building material from waste: Advanced gypsum to replace natural gypsum

An international team of scientists has presented an eco-friendly and economically viable technology for recycling waste lime and sulfuric acid into a high-quality construction material. This substance can be used to create a stronger and moisture-resistant cement that also sets faster. The new method is characterized by simplicity, significantly lower material costs compared to traditional technologies, and greater energy efficiency. It requires only 40°C instead of the usual 700-900°C.

New neuroimplant is one step closer to spinal cord injury patients

Researchers at NUST MISIS have patented a neuroimplant that will help restore damaged nerve tissues in the spinal cord. The structure consists of two layers: a biodegradable polymer and special fibers that can be filled with medications targeting damaged nerve tissues in the spinal cord and accelerating healing. Obtaining the patent confirms the high inventive level of the product and brings closer the possibility of launching production of the neuroimplant to assist people.

Reaching for the Stars: Ultra-Sensitive Detectors for Space Exploration

Thanks to new detectors developed at the MISIS University, researchers can now obtain more comprehensive and precise maps of celestial bodies, accelerating scientific progress. These domestically produced superconducting devices operate near absolute zero, at temperatures below 1 Kelvin, and effectively process data due to their exceptionally low thermodynamic noise.

Universal nanobiosensor to aid in early disease diagnosis

Researchers at NUST MISIS have developed a high-precision nanoelectrode sensor capable of measuring copper ion concentrations in living cells and entire organs in real-time. This innovation opens up new approaches for diagnosing and analyzing the dynamics of cancerous and hereditary diseases. Additionally, the sensor will enable evaluating the effectiveness of novel medications containing copper.

Discussion on Expanding Scientific and Technical Cooperation Between India and Russia at NUST MISIS

The 13th meeting of the Working Group on Science and Technology under the Russian-Indian Intergovernmental Commission on Trade, Economic, Scientific, Technological and Cultural Cooperation took place at MISIS University. At the meeting, representatives from government organizations, scientists, and industry experts discussed expanding cooperation between the two countries: developing joint educational programs, promoting national languages, implementing fundamental and applied scientific research, conducting joint competitions for research projects, and training Indian students in Russian universities.

Scientists Develop Protective Coatings for Energy and Mechanical Engineering Sectors

Researchers from NUST MISIS, Henan Academy of Sciences, and China University of Mining and Technology are developing coatings that can increase the service life of heat-loaded components in the energy and mechanical engineering industries by several times. The core of these coatings consists of zirconium and molybdenum borides and silicides, which are highly resistant to oxidation. A layer of borosilicate glass applied to the surface creates a self-healing effect, sealing defects and cracks.

Meeting of the BRICS Science, Technology and Innovation Funding Working Group took place at NUST MISIS

Meeting of the BRICS Science, Technology and Innovation Funding Working Group took place at MISIS University. The event focused on the results of the 6th BRICS STI Framework Programme and the mechanisms for supporting various projects. The meeting was organized with the support of the Ministry of Science and Higher Education of the Russian Federation, NUST MISIS, the Russian Center for Scientific Information, and the International Center for Innovations in Science, Technology and Education (ICISTE).

MISIS University welcomed a delegation from India

A delegation from the Council of Scientific and Industrial Research (CSIR) and the Jawaharlal Nehru Aluminium Research Development and Design Centre (JNARDDC) visited NUST MISIS to discuss prospects for collaboration in the fields of mining and electrometallurgy. The guests were introduced to the University’s advanced developments and laboratory infrastructure. Both parties expressed interest in joint research projects.

Scientists at NUST MISIS Develop “Digital Twins” for Managing Quantum Systems

Researchers from the National University of Science and Technology (NUST MISIS) and the Russian Quantum Center (RQC) have developed a model for managing complex quantum systems. This innovation opens new possibilities for faster information transfer and allows for better control over the system’s dynamics. The proposed method is beneficial for reducing errors and suppressing noise in quantum devices. It can be used to study various effects in many-body physics and to search for new quantum materials. Modifying the model allows for observing systems at a macroscopic level, paving the way for managing quantum systems across different phases of matter.

NUST MISIS is developing cooperation with universities of China

A delegation from universities of the People’s Republic of China visited NUST MISIS to discuss prospective areas of cooperation. The guests emphasized the importance of joint development in science and education, as well as exchange programs for master’s and doctoral students. The meeting was organized with the support of Beijing WECO International Education and Culture Co., Ltd.

Scientists at NUST MISIS have identified the optimal alloy manufacturing mode for endoprostheses

A more efficient technology for producing a new generation titanium alloy has been proposed at the MISIS University. The results will allow for the future creation of stronger hip joint endoprostheses using 3D printing, which do not contain alloying components, do not cause negative immune reactions from the body, and take into account the physiological characteristics of patients. This will help avoid repeat implant replacement surgeries for many patients.

Scientists from NUST MISIS have created a composite shape memory material for 4D printing

Researchers at the MISIS University have developed a new magnetically sensitive polymer composite material that is promising for 4D printing, a technology in which materials can change their shape over time. The material is also suitable for creating adaptive medical devices, such as soft tissue fixators and “self-setting” bone implants. The composite, consisting of polylactide and cobalt ferrite, has the ability to heat up quickly under the influence of a high-frequency alternating magnetic field and recover its shape well after deformation, without causing harmful effects on the body.

Scientists from NUST MISIS have found out how to improve the alloy for maxillofacial implants

Based on the experiments, scientists from NUST MISIS have identified a methodology that improves the balance of strength and ductility of the biodegradable magnesium alloy used in biomedicine, particularly for maxillofacial implants. The peculiarity of the material lies in the fact that after the operation, it gradually dissolves in the human body. Fixing elements (screws, pins, plates, etc.) made of magnesium alloy are completely replaced by newly formed tissue, eliminating the need for a second operation to remove temporary elements from the human body. In recent years, researchers have been interested in the magnesium, zinc, and gallium alloy (Mg-Zn-Ga). The addition of zinc and gallium improves the mechanical and corrosion properties, allowing the integrity of the implant to be maintained for a certain period necessary for the healing process. Zinc contributes to the strengthening of the material, while gallium enhances its ductility, imparts antimicrobial properties, and increases bone tissue density. Due to its characteristics, this alloy is much closer to human bone tissue than titanium.

Researchers at NUST MISIS have developed a platform for detecting diseases at early stages

Scientists from the MISIS University, in collaboration with colleagues from Skoltech and the National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, have developed a platform for detecting clinical biomarkers of diseases in human biological fluids in real-time. It could serve as the first step towards creating a portable lab-on-a-chip for early detection of cancer, neurodegenerative, and cardiovascular diseases, as well as for monitoring treatment.

Manipulating the Earth’s crust under extreme stress conditions can lead to man-made earthquakes, NUST MISIS scientist claims

Earthquakes can be caused not only by natural factors; some strong ground movements in industrial zones have a mixed nature, such as natural-technogenic or technogenic-tectonic. The trigger for these can be engineering interventions in the subsurface. A scientist from NUST MISIS highlighted the need to study geodynamic effects related to the extreme stress state of the Earth’s subsurface in areas where mining activities are conducted.

Russian scientists have refuted the sensational conclusion made by researchers about the possibility of breaking quantum algorithms

A team of scientists from the MISIS University, RQC, and Sber conducted a thorough analysis of the calculations used by researchers from Zhengzhou, Beijing, and Hangzhou institutions to simulate the breaking of a cryptosystem using a 350+ qubit quantum computer and questioned their sensational conclusion about a revolution in cryptography. Russian scientists believe that the colleagues’ algorithm is not functional due to some “pitfalls” in the classical part and the complexity of the quantum part’s implementation.

The world’s first operation using bioprinting on a patient was performed with the help of a bioprinter created at NUST MISIS

The Main Military Clinical Hospital named after Academician N.N. Burdenko conducted the world’s first operation using a bioprinter consisting of a robotic arm, a bioprinting system, and computer vision. The device was developed by scientists at NUST MISIS and the pioneers of Russian bioprinting, the company 3D Bioprinting Solutions. The trajectory of the in situ biopolymer delivery, directly into the wound, was programmed on-site by a university specialist after scanning the site of the injury. The surgeon harvested the patient’s cells from the bone marrow and then added them to bio-ink for printing. The robot conducted the scanning and bioprinting without human involvement. According to the medical professionals at the center, this equipment opens up entirely new possibilities for treating complex extensive soft tissue defects.

Scientists at NUST MISIS Simplify Russian Coal Exports to China

Researchers at the National University of Science and Technology MISIS have created standard coal samples that meet China’s stringent quality standards, making it easier to export Russian coal. This is the first time such samples have been produced in Russia. They are twice as affordable as the currently used foreign samples, aiding in import substitution. The widespread use of these samples is expected to impact pricing on both Russian and international markets, transportation tariffs, taxation, and environmental issues.

Scientists from NUST MISIS have proposed a new approach to modify alloy surfaces for medical purposes

Researchers from NUST MISIS have proposed a new two-stage method for modifying alloys, which are promising for manufacturing orthopedic implants that require special mechanical and functional properties. By using atomic layer deposition on the surface of a superelastic Ti-Zr-Nb (titanium-zirconium-niobium) alloy, they were able to obtain an oxide film (TiO₂) that allows for controlling the chemical state of the material. Subsequently, silver nanoparticles were applied to the alloy, significantly increasing the antibacterial activity of the material.

NUST MISIS scientists patent a biodegradable alloy for bone implants

Researchers at the MISIS University have patented a shape memory alloy for biodegradable bone implants based on an iron-manganese-silicon (Fe-Mn-Si) system. It possesses high biomechanical compatibility with bone tissue and the required rate of dissolution, making it a promising material for use in traumatology, orthopedics and maxillofacial surgery.