Science community

Scientists from NUST MISIS have found out how to improve the alloy for maxillofacial implants

Based on the experiments, scientists from NUST MISIS have identified a methodology that improves the balance of strength and ductility of the biodegradable magnesium alloy used in biomedicine, particularly for maxillofacial implants. The peculiarity of the material lies in the fact that after the operation, it gradually dissolves in the human body. Fixing elements (screws, pins, plates, etc.) made of magnesium alloy are completely replaced by newly formed tissue, eliminating the need for a second operation to remove temporary elements from the human body. In recent years, researchers have been interested in the magnesium, zinc, and gallium alloy (Mg-Zn-Ga). The addition of zinc and gallium improves the mechanical and corrosion properties, allowing the integrity of the implant to be maintained for a certain period necessary for the healing process. Zinc contributes to the strengthening of the material, while gallium enhances its ductility, imparts antimicrobial properties, and increases bone tissue density. Due to its characteristics, this alloy is much closer to human bone tissue than titanium.

Researchers at NUST MISIS have developed a platform for detecting diseases at early stages

Scientists from the MISIS University, in collaboration with colleagues from Skoltech and the National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, have developed a platform for detecting clinical biomarkers of diseases in human biological fluids in real-time. It could serve as the first step towards creating a portable lab-on-a-chip for early detection of cancer, neurodegenerative, and cardiovascular diseases, as well as for monitoring treatment.

Manipulating the Earth’s crust under extreme stress conditions can lead to man-made earthquakes, NUST MISIS scientist claims

Earthquakes can be caused not only by natural factors; some strong ground movements in industrial zones have a mixed nature, such as natural-technogenic or technogenic-tectonic. The trigger for these can be engineering interventions in the subsurface. A scientist from NUST MISIS highlighted the need to study geodynamic effects related to the extreme stress state of the Earth’s subsurface in areas where mining activities are conducted.

Russian scientists have refuted the sensational conclusion made by researchers about the possibility of breaking quantum algorithms

A team of scientists from the MISIS University, RQC, and Sber conducted a thorough analysis of the calculations used by researchers from Zhengzhou, Beijing, and Hangzhou institutions to simulate the breaking of a cryptosystem using a 350+ qubit quantum computer and questioned their sensational conclusion about a revolution in cryptography. Russian scientists believe that the colleagues’ algorithm is not functional due to some “pitfalls” in the classical part and the complexity of the quantum part’s implementation.

The world’s first operation using bioprinting on a patient was performed with the help of a bioprinter created at NUST MISIS

The Main Military Clinical Hospital named after Academician N.N. Burdenko conducted the world’s first operation using a bioprinter consisting of a robotic arm, a bioprinting system, and computer vision. The device was developed by scientists at NUST MISIS and the pioneers of Russian bioprinting, the company 3D Bioprinting Solutions. The trajectory of the in situ biopolymer delivery, directly into the wound, was programmed on-site by a university specialist after scanning the site of the injury. The surgeon harvested the patient’s cells from the bone marrow and then added them to bio-ink for printing. The robot conducted the scanning and bioprinting without human involvement. According to the medical professionals at the center, this equipment opens up entirely new possibilities for treating complex extensive soft tissue defects.

Scientists from NUST MISIS have proposed a new approach to modify alloy surfaces for medical purposes

Researchers from NUST MISIS have proposed a new two-stage method for modifying alloys, which are promising for manufacturing orthopedic implants that require special mechanical and functional properties. By using atomic layer deposition on the surface of a superelastic Ti-Zr-Nb (titanium-zirconium-niobium) alloy, they were able to obtain an oxide film (TiO₂) that allows for controlling the chemical state of the material. Subsequently, silver nanoparticles were applied to the alloy, significantly increasing the antibacterial activity of the material.

NUST MISIS scientists patent a biodegradable alloy for bone implants

Researchers at the MISIS University have patented a shape memory alloy for biodegradable bone implants based on an iron-manganese-silicon (Fe-Mn-Si) system. It possesses high biomechanical compatibility with bone tissue and the required rate of dissolution, making it a promising material for use in traumatology, orthopedics and maxillofacial surgery.

Russian scientists propose an innovative dual-action cancer drug

Russian scientists have proposed an innovative approach in fighting cancer, which will significantly reduce severe side effects from treatment. They have developed a promising pro-drug Riboplatin for combined chemical and photodynamic therapy based on platinum Pt (IV) and a photosensitizer (a substance that increases tissue sensitivity to light). The drug is controllably activated only in the area of malignant neoplasm under the action of blue light, without affecting unexposed tissues, thus opening up opportunities for “spot” chemotherapy. The proposed pro-drug design renders it possible to tackle the issue of toxicity and cellular resistance to conventional antitumor drugs. The research findings are published in the scientific ACS Applied Materials & Interfaces journal.