Science

The world’s first operation using bioprinting on a patient was performed with the help of a bioprinter created at NUST MISIS

The Main Military Clinical Hospital named after Academician N.N. Burdenko conducted the world’s first operation using a bioprinter consisting of a robotic arm, a bioprinting system, and computer vision. The device was developed by scientists at NUST MISIS and the pioneers of Russian bioprinting, the company 3D Bioprinting Solutions. The trajectory of the in situ biopolymer delivery, directly into the wound, was programmed on-site by a university specialist after scanning the site of the injury. The surgeon harvested the patient’s cells from the bone marrow and then added them to bio-ink for printing. The robot conducted the scanning and bioprinting without human involvement. According to the medical professionals at the center, this equipment opens up entirely new possibilities for treating complex extensive soft tissue defects.

A new approach to studying neurons will help understand the mechanisms of Alzheimer’s disease development

The research group of NUST MISIS, along with colleagues from the Russian Academy of Sciences’ Institute of Molecular Biology, demonstrated the efficiency of a fundamentally new method for analyzing neuronal cells. Using the only scanning ion-conducting microscope in Russia with a confocal module, scientists have revealed that Alzheimer’s disease causes neuronal cells to become mechanically stiffer because amyloid aggregates formation on their surface.. Novel therapeutic agents for Alzheimer’s disease treatment are currently being examined using this innovative scientific equipment.

NUST MISIS scientists create new materials for the space industry and nuclear energy

Researchers at MISIS University have introduced new materials called hafnium-zirconium carbonitrides. These materials can be used as components of matrix nuclear fuel or thermal protection for spacecraft. The chief advantage of these materials over their carbide predecessors lies in their increased resistance to high-temperature oxidation. The service life of the product and the upper limit of working temperatures hinge on this property.